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ABSTRACT

/ A new cone-ratio Data Envelopment Analysis model which

substantially generalizes the CCR model and the Charnes-Cooper

Thrall approach characterizing its efficiency classes is herein

developed and studied. It allows for infinitely many DMU's and

arbitrary closed convex cones for the virtual multipliers as well as

the cone of positivity of the vectors involved. Generalizations of

linear programming and polar cone dualizations are the analytical

vehicles employed)
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1. Introduction

We develop the following new "cone-ratio" DEA model which substantially generalizes

the CCR model 131 as wellI as the approach or Charnes, Cooper and Thrall1 [8J to characteriz Ing

Its efficiency classes:

Max uTyjO / vTXjO

(C2WH) St VT-UTYE K

VC V, U E U, (V 1!0, U 0)

where

V c E+m Is a closed convex cone, and tnt V 0.

U c Es Is a closed convex conc, and Int U 0.

K c En Is a closed convex cone, and

6j (0, 0" 1 0,., Q)T E - K*, 1~,, n,

where Km (ki k K 0, V k EK) Is the "Polar cone" of the set K.

X= [x1,. xnl Is an m x n matrix.

xi Is the Input vector of DMUj, xj c tnt (-Va)

YJIs the output vector of DMUj, Yj c Int (-Uw).

We shall require the following facts about acute cones. Cone U Is said to be an "actJe'

cone If there exists an open half-space

H =(u; a Tu > 01

such that Gc H U (01, whereG UIs the closure of U. It Is easy to prove the following results

(i) tnt UW 0 itf and onlIy I f U I s an acute cone (See ( 131).

(11) When V Is an acute cone, tnt V* = {v: vTV < 0, v E V, v ;e 01 (See [ 131).

(111) When V Is aclosed convex cone and Int V - o, V*f1(-Vm) = (0).



2

In Fact, since (V*)m V and Int V 0, V* Is an acute cone. Hence there exists an open

half -space H - (u: aTu >0) such that

V* c H U (0)

Namely

aTvN 0 for all nonzero v* E si",()

so

aTP" <0 for allI nonzero p' E - V"M. (2)

Combining (I ) and (2), we have

Vr n (-v") (0).

Weccan got vlxj >)ofrom ElOc nt (-V* )and v cV, v --.

Employing the Charnes-Cooper transformation of fractional programming [2],

wtv, P = tu, tv Ixj -

we obtain the following pair of dual convex programs as In Ben-Israel, Charnes and Kortanek

f121.

Vp =max pl yjO

(p) st. WrX - p cK

wTX10 1 ,

WE V, P.iEU.

and

VD - min e
(D) s.t. 8- xjO E V*,

YX+ Yjo E UTM,

X E -KM.

Since 6jc - KTM, we can get Kc: E~ Therefore

VP ,Max p~j wTxj0 - I.

Definition I: DMUJO Is said to be "DEA-ef f lcient" If there exists an optimal solution (W, p0)

of program (P) such that

11111 1011 11-
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poTyjo -

and

wo eIntV, pO EIntU.

Definition 2: DrUjo Is said to be "weak DEA-efflcient" If there exists an optimal solution

(we, pO) of program (P) such that

PoTyjo  1.

The pair of dual programming problems (P) and (D) constitute a model In which convex

cones are used to measure the efficiency of DIU's (In the appendix, we present the dual theorem

concerning the dual programming problems (P) and (D).) In this paper, we establish the

equivalence of DEA efficient solutions and nondominated solutions of multiobjective

programming (VP) (see section 2). We also discuss the "projection" of decision making units

onto the efficiency surface and the existence of DEA efficiency of DMUs (see section 3).

Let V - E.m , U - E.s and K = E n. The pair (P) and (D) Is then the CCR model [31

VpI = max i Tyjo

(PI)fs.t. w'X-pl1o,

wTXjo- I.

w, P 0.

and

VDI - min 0

(D I ) s.t. XX - Oxjo 1O,

-YX + gjo 1 0,

X 1 0.
If we set K = E n the pair (P) and (D) becomes



V P2 -Max yj

(P2)fSt. -RpT 0,

W E V, Pi E U.

and

V02 - min e
(D2) fst. XX - XjO EVW

-YX + Yjo C U*

X 2 0.

In (P32), the morc gencral conditions w C V, Pi E U replace the non-negativity conditiono or the

CCR model.

If we sct V = E,, U= E+s, we get the pair (P) and (D) as

Vp3 = max yo

(P3)jst. WTX - II'YE K,

WIxjo = 1,

W, P 20.

and

V D 3 
m 

n 0

YX+ Yjo 0,

X E -K*.

In (D3), we have X c -K* which replaces and generalizes the conical hull conditions about the

production possibility set In the CCR model [6).
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2. DEA Efficiency (or Weak DEA Efficiency) and Nondomlnated

Solutions of Multiobjective Programming Problems

Consider the multiobjective programming problem{)v - min (r, (x, y) , fm (X, y), fml (x,y), fm~s (x,y))
(Vp)

s.t. (x, y) E T

where

T = ((x, y) : (x, y) E (XX, YX) + (-V*, U*), XE - K*)

Is the production possibility set (It Is easy to show that T Is a convex cone). Also

-_ xk ,  It k m,

fk(x,y)
-Yk-m, m + I fk m + s

as in C2GS2, where

x(xI ... Xk,... Xm)T,

Y -- (Yl . .. Yr . .. Ys) r .

Since 6j c - K", we have the Input-output vector pairs (xj, yj) c T, j .

Let

f(x, y) = (fl (x, y), . . . fmrs (X, y))T .

Definition 3: (xjo, yjo) c T Is said to be a nondominated solution of the (VP) associated

with V* x U* If there exists no (x, y) c T such that
f(x, y) C f (Xjo, Yio ) + (V*, U*), (x, y) ,"(x)o, YJO )

Namely, there exists no (x, y) E T such that

(x, -y) E (Xjo, -Yjo) + (V, U*), (x, y) (xjo, Yjo)

Definition 4 (xjo, yjo) e T Is said to be a nondomInated solutIon of (VP) associated wIth

Int V* x Int U* If there exists no (x, y) E T such that

f(x, y) c f(xjo, yjo) + (nt V, Int U")

Namely, there exists no (x, y) E T such that

(x, -y) E (xjo, -yjo) + (nt V*, Int U*)

A F'%



In this section, we will study the relations between DEA efficiency (or weak DEA

efficiency) of DrI's and nondominated solutions of (VP) associated with V* x UK (or

int V x xInt UK).

Let

S - ((xj, yj), j = , ,n)

S =(ftX,YX): X E -K-)

T = ((X, y) :(N, Y) E (RX, YX) V (*, UK) X E -K)

Lemma 1. Lot (wO, p0) be an optimal solution of (P), and ljOTyjO, = 1. Thcn ror an

arbitrary Nx,y) c T we have

wO OT joy 0= WOI xj - POTYjO0

Proof. Since ljoO 1, we have

WOTXjo - lIjOyjO 0

For an arbitrary (x, y) E Sthere exists X E -K* such that

(X, Y) = (R,\, yx)

Since WoTX - pOT'Y E K, then we get

WoTX - 1joTy = WOTXX\ - jIOTYX = (wOTX - 1oTy) X 0.

For an arbitrary Nx, y) E T, there exists X E -K*, v* c - V*, u* c -U* such

that

Nx, y) = X + V*, YX - UK)

wOTX - jaOTy = WOT(RX + VK) - [I0T(YX - UK)

=(WOTR - poTy)X\ + wOTV* pOTuK 0.

0.E.D.

Theorem I Let DMUJO be DEA eff icient. Then (x10, yJ0) is a nondomInated solut Ion of

(VP) associated with V* x UK.

5 W . W
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Proof: If (xjo, Yjo) Is not a nondominated solution of (VP) associated with V* x UI,

then there exists (x, y) E T such that(, -Y) E (Xjo, -Yjo) + (V*, UT ), (U, Y) 7 (Xjo, Yjo)

that Is, there exists (v, uT ) E (V*, Uw), (v*, u*) - 0 such that

(x, -y) = (XJO, -Yjo) + (VT , u*)

Since D11Ujo Is DEA efficient, there exists an optimal solution

(w o, po ) E Int V x Int U such that

poTyjo I.

We have

woix - poly

(wOixj o - polyjo) + (WoTV* + pOU TM)

< woIxjO- PoIIYjo

as we shall see. For consides (v*T, u"T) ! 0 and without loss of generality, suppose

V Me0. Since wo c Int V, v" e V M and V Is acute, we have worvM < 0, pOlu" , 0, which

suffices.

But by Lemma I, we have

wOTx - p oT woTxjo - PoTlj 0

a contradiction.

0.E.D.

Theorem 2. Let (xjo, Yjo ) be a nondominated solution of (VP) associated with V x LIT

and let Assumption (A) hold (see Appendix). Then DMUjo Is DEA efficient.

Proof: Since 5 c T, the following system (I) is inconsistent:

(I (XX, -YX) E (Xjo, -Yjo) + (V, UT ), (NX, YX) ;r (Xjo, Yjo )

")t X E - K*

Now let us consider the pair of dual programming problems
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V= min (wTxJo - pTyjo)

(P) s.t. WTX - jT EK,

W -t E V,

11 t E U.

and

V- max ( Ts -  ts*)

(D) s.t. XX-Xjo+ s- 0 ,

-Yx + Yjo + S- 0,

Xc-K*,s-c- V s +, cS-U.

where t c Int V, t c Int U.

First, we want to show VD - 0. For an arbitrary feasible solution (X, s-, s+) of

(D), since s- c -V", t c Int V, s+ c -U*, t c Int U, then

ls -  0, 1's+ 0,

so VD 20. If V0 > 0, namely there exists an optimal solution (?,o s o - , s o -) of (D), such

that

VD = tsO - + ^TsO° > 0,

then we have

(XXO, -(xo)=(xjo, -yj,)-(-sO-,-sO+), (-sO-,-sO+)E(V " , U*), (SO-, so * ) " 0

This yields a contradiction because (I) Is Inconsistent.

By the dual theorem (see Appendix, Th. 3), we have VP = 0.

Secondly, let (v, p) be an optimal solution or (P), and let

WO V/ VTXjo , i0 = P/ vTxj 0
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Then we have

WOxo pOTylo = 1,

Wof)X - poTY E K

WO C t/w T X j + VclntV (slncetElntV)

poct /wxjo +Uc IntU (stncetclnt U)

Namely,

max ply,, - pOlyl o% ,

wOIX - pOly c K,

WOIX1o = I

w o c nt V, pO c lnt U

-)o DM1 IO is DEA efficient

0OE D.

Theorem 3 Let DMUJO be weak DEA cfficient. Then (xio, y1 o) Is a nondominated

']olutlon of (VP) associated with Int V* x Int U*

Its proof Is simllar to Theorem I

Theorem 4 Let (xjo, y1o) be a nondominated solution of (VP) associated with lnt V* x lnt UN,

and Assumption (B) hold (see Appendix). Then DMUjo is weak DEA eff iclent.

Proof. Since (Xj0 yjo ) is a nondominated solution of (VP) associat e d with

Int Vm x Int Up, then the following system (11) is inconsistent.

(II (XX, -YX) C (Xjo,-Yjo) + (tnt Vt , Int U*)

X c -1)

lV
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Consider the pair of dual programming problems

=p min (WTXjo - pTyjo)

st. WTR - pTY E K,

W - V E V,

III p- UEU,

tTV + ^TU =1

VEV, UEU.

and

r =V max z

s.t. RX - XJO+ s-0,

CD YX +YJo + s+0,

Zt -S- E V*

Zi - 5 EU

XE-K, S-E-V*, s+E-U*

wherrc-IntV, tEintU.

Since 6jc-K*, J= l,...,n, then

(X, s , s+,z) =(6 j 0, 0, 0,0)

is a feasible solution of (D), and

Vb= max z 2 0.

First, we have to show Vb = 0. If~ Vb > 0, there exists an optimal solution

(XO, s 0-, sO+, zO) of (b) such that

Vb= max z = z0 > 0.

Since V c E.,m, then

I nt V ={(w: WT <0, YVvEV and v ; 0).

Because of z~t > 0, we have

(ZOt)TV< 0, for al IIV E V andy v 0.

*1ON



so

z~t 4E mnt V*.

Similarly we can show

-ziE Int U*.

Hence we have

-oE V* - ztc mnt V*,

-SO* E U'0 - z~rt c Int U*.

This yields a contradiction because (11) Is Inconsistent.

By the dual theorem (soe Appendix, Th. 4), we have VP V6 V 0.

Secondly, let (w, p, v, u) be an opt imal solut Ion or (P), then we have

W E v+ V C V,

~C u + U C U.

Since

we have

t~w + tlj = (tETV + tTU) +(tTV*'* +~ ' 2 1

So (w, p) 0. SincecVp = V = 0, then we get

Therefore w 0!, p*0. Let

WO= w /WTXJ 0  p0  P WiTX 10

we have

pOTyjo wOTXJ0  I
WOTR - poTy e K,

jO E U / WTXj * U CU

I~ 0111 %. P
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Namel

rmax VTyjO u pOTyjo

st. WTR - p e K,

WTXj

WEV, PEU

and W C V, p10c U. So DMUjO Is wcak DEA eff icicent.

0.E.D.

3. Efficiency Surface "Projection" and Existence of DEA Efficiency

For an arbitrary (xjo~yjo) c S - ((xj, yj), 1, . . . , n), we consider the

following programming problem.

max (r[S- + tTS+)

s. t. XX - x10  s = 0,

(pjO) - XYJy1 +s+ 0,

I-X c- K*, s-c - V*,s+ c - U

where t c Int V, t c Int U.

Suppose (XO, s0 -, so+) Is an optimal solution of (PJO). Let

x = X0\ = xjo - s-

y= Y,\O = Y10 + S*

We call Nx, y) the "projection" of DMU10 onto the efficiency "surface" or the production

function (see [41, p 70).

It Is obvious that (N, y) E T, Since Yjo E Int (-Uw) So+ E - U*, we have

y .jO +so+ Int (-U *).

Because 0 C Int (-U*), then we get y x! 0. Therefore 6x, Y) X 0

Theorem 5. The projection Nx, y) of DMUjO Is a nondominated solution of the (VP)

associated with V xUw.
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Proof. Suppose (6, ) is nct a nondominated solution of (VP) associated with V" x U0.

Then there exists (x, y) e T and (v, u) E (VW, U*) such that

Since (x, y) e T, there exists Xe - K* and (v, ) E (V", U* )

such that

(x, y) - (X,, YX) + (-V, U)

So we have

and

(v + v, u + U) 0 (2)

(In fact, If (v + v, u + u) = 0, we would have (v, u) (v, -u) c (V, U*)

Since (v, u) e 0, without loss of generality, let v 0. Then we have v = -v c V*. This

yields a contradiction to V* n (-V*) ( o}).
Let

v -- + UE V", u" ; + U".

By (I) and (2), we have

(X, - X) m (6, -y) + (W, u*), (W, u*) 0 0

so

X^ + V* j - so-+0

-YX =- + u" -YJO - SO + U".

Then we et

X + (so - - v") = Xjo,

+ (so + - u) =-YJ,

Xe-K", so- -vE- V*, s O+ - u*  - u ,

Further, since t E nt V, v* E V*, E lnt U, U* E U*, we have

tTv* K 0, ^Tu* j 0.

..~. ~"~ I
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We know that (v, u*) e 0, so

tTv* + iTu* < O.

Thus

trT(So- - V*)+ jT(SO+ - Uw)

= (tTso- + iTso+) - (tTv" + iTU")

> tTso- + 'TsO+'

This contradicts the fact that (XO, so-, s O+) Is an optimal solution of (pjO). Thus (x, y)

is a nondominated solution of (VP) associated with V* x U*.

Q.E.D.

Corollary I. Lct

(Xn+1, Yn+i )  (X, y)

where (x, y) Is the projection of DMUjo. Then DMUn+ 1is DEA efficient.

Proof. By Theorem I and Theorem 2, DEA efficiency and-nondominated solution of (VP)

are equivalent properties.

Q.E.D.

Theorem 6 Suppose

(i) For arbitrary X = (X)t, \ 2 , .. , )T E - K*, we have

XjV c V*, XjU* c U, j= I,2,..,n.

where

XjV = (XjV* 'V* E V*), XjU = {)XjUN U. E UN).

(11) For arbitrary X1 = (X I, X2
1 

. . , Xn) T E - K*, i 0 , I, .... n,

we have

(X 1, X2, • n) \o Xlk k ° k 0 2 kXkO, -' Ik nk k c - K*

Then there exists at least one DMUjo (I J o n) which is DEA efficient.
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Proof: By Theorem I and Theorem 2, It is only necessary to show that there exists some

(xjo, yjo) e S such that It Is a nondominated solution of (VP) associated with V* x U*.

Suppose for an arbitrary J (J- I, n), (xj, yj) Is not a nondominated

solution of (VP) associated with V* x Um, then there exist (Xj, yj) e T and c - K*

such that

(Xj, Yj) E (R ,Y X1) (-VM, U") (3)

and

(xj, -yj)E(xj, -yj)+(V*, U*), (xj, Yj)x* (xj, yj), I, 2,.., n (4)

By (3), there exist 0 E V*, UJE UT such that

(j, Y) - (X X , Y Xi) + (- v, 1 ) (3')

By (4), there exist v c VN, u c U" such that

(xj, yj) (xJ, yj) + (Vi. -uJ), (vj , J ) 0 (4)

By Theorem 5, there exists XO c -K, X° r 0 such that

(X, Y) N X\, Y XO) (5)

is a nondominated solution of (VP).

Multiplying (4') by Xjo and summing over J, we get

n n n

I XjXjO I XjXlO 0i VJXjo
i-I j--l J~l

n n n
I" I ;j( yj~j0 OJj

J- 1-1-

namely,

n n

" _ XT c  XX0  v-JO
J-i 1-1

- (6)

-" LJXjo -'iYx 0  I" U1Xjo

j=1 =1 , -l
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By (6), (5) and assumption (1), we have

n n

x 1 X 1 0 = E-

By (3T), we have
nn

I jxjon j K-(J JXK-VK)XKO

n n
I Y)jO I y1x iK. + U) XKO

P In 

1 : )I XK \O) X) -,I VKXKO0

n n + n
(_ K-I\)YJ2 UK AKO

By assumption (11), we have

x1K ~ K K I2KX -K

(KIK-1 K =I)

By assumption (1), we have

n -Kn K 0 E Uy V K\KO E V I1\ K~
K-1 K-1
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so we get
n

I XJXJO

J1

n _

Since XO 0, then

n
~I )u\ 0

jwI
1='0

In fact, If

=0 (10)

by (v!~ u) 0, j= I,, n, and XO? 0, without loss or gencrality, lot XV 0 and

S0 Then by (10), we have

By assumption (1), we get

vjYo Ev nWf (-v*).

a contradiction.

By (7), (8) and (9), we get a contradiction to (x, y) Is a nondominated solution

of (VP) associated with V' x *

Q.E.D
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Appendix

Consider the following pair of dual programming problems

(P) min CTX
f s. t. Ax -b EK

and
rMax yTb

where A Is an m x n matrix, b E Em, c c En, K (z Em is a closed convex cone and

lnt K 0(let KO -lnt K).

Let (see [ 131, [141 and [ 151)

S= (X: Ax -b cK)

I(K,Z)=(z-aZ: ZEKO, a 0), z cK

T(R, x) =(z: 3xK ER and aK>0, such that liM cK( xK -X) =Z)

K-

LUx){z. AZ E I(T, Ax

LOWx = mt LUx)

DWx (-Aly;- yE - K*, yT(Ax- - b) =0)

where x c R.

It Is easy to establish the following lemma:

Lemma I.

(1) l(KO, z) Is an open convex cone.

0ii) LUx) Is aclosed convex cone.

0(If) Dd Is a convex cone.

Lemma 2. 1IM(KO, Z) -(y. yEC K 0, yTZ - 0).

Proof: Let y E INMKO, z), then for arbitrary z e KO and a 2 O we have

yT(Z - az) 1 0()
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Let a - 0, we get

yTZ j Vz EK.

namely, y E(KO) 0= K*
Since Z EK, we have yT-O. zyKee yT s 0T~.

Therefore

I M(KO, z) c (y: y r K*, yTz- 0).

Let y E (Y: Y E K*, yTz = 0). Then for arbitrary Z E KO, a 2 0, we have

yT(Z - a z-)

- y Tz - ayTz

S0,

so

Y E IK(KO, Z-).

Therefore

(Y: Y EKKy T Z0) c:I (KO, Z)

0.E.D.

Lemma 3.

(i) LUx) -D * W.

onI if D(x) Is closed, then L Klx = D(x).

Proof .

(1) Let z E D*(x), then for an arbitrary

y E I *(KO, Ax - b) - (y: y E KK, yT(Ax- - b) =0),

we have -AT(-y) r: D(x), hence

(AZ)Ty - ZT(-AT(-y)) j 0.

Therefore

Az c (I *(KO, Ax - b))K I (KO, A x - b).
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Namely,

D*(x) c L(x).

Now, let z E L(x), I.e.

Az E I (KO, Ax - b).

Then for arbitrary y satsifying

yE-K*, yT(Ax-b) = 0

we have

zT(-ATy) = (Az)T (-y) 0

(Since I *(KO, Ax -b) = (y: yEK*, yT(Ax -b) = 0), so -yg I*(KO, Ax -b).) Since

-Aly c D(x), we get z c D"(x), namely

L(x) c D*(x).

(ii) Since D(x) Is a closed convex cone, from (i) we have

L(x) = Dm*(x) = D(x).

0.E.D.

Lemma 4. T(R, x) c L(x).

Proof: For an arbitrary z c T(R, x), there exist xK c R and aK > 0 such that

JrM aK(XK - X) = Z.

K-oa

From AxK - b E K and Ko e 0 we know that there exists (yK,fJ c Ko such that

lIm yKk = AxK - b.

Because yK,k E KO and aK  0 we have

aK(yK, - - (AxK - b)) E I (KO, Ax - b).

Let k-. o we get

aK(AXK - b) - OK(Ax - b) E I(K O, Ax - b).

But

AaK(XK - x) = aK(AXK - b) - aK(Ax - b).



21

Thus

AcXK(XK - x) E I (KO, Ax - b).

Let K - 00, we have

Az e IWO0, Ax -b)

namely

T(R, X) c LUx)

Lemma 5. LOWx c T(R, X).

Proof. Since KO ;, 0, It Is easy to show that

LOWx) {z. Az c i(KO, Ax - b)).

For an arbitrary z c LOWx, there exist u c KO, a 2 0 such that

Az - u - a(Ax - b).

Case (1), a =0. For an arbitrary p 0, we have

ANx + pz) - b

S(Ax - b) + pAz

= (Ax - b) + pu c K (because x c R and u c KO).

Take (PK) satisfying

P1>P2 >0., Irn PK=0

K-

Let

XK X +PKZ, aK- PK

we have XK ER, JIM Kx=, aK 0and

z = aK( XK - X)

Therefore

Z E T(R, X).



22

Case (11), a)> 0. For an arbitrary p E [0, 1 / a] we have

ANx + pz) - b

= Ax - b + pAz

- (Ax - b) + p(u - a(Ax - b))

=(0 - ap)(Ax -b) + puEK (because xEcR, u cKO).

Take 00 satisfying I /a 2 PI> P2 ... >0, urn PK= -

Lot

xK = X+PKZ, aK PK~

We have XK CR, (K > 0 , Jrn XK=x and ZOaK(XK -X)
K-

Theref ore

z c T Rl x).

Q.E D

Theorem 1. (Weak Duality Theorem) Let x be a feasible solution of (P), y bea

feasible solution of (D). Then

CTX Z yTb,

Proof. Since Ax - b c K, there exists u c K such that Ax b + u, hencc

c~x ylAx

-Y
1(b~u)

Lemma 6. Let x E P be an optimal solution of (P). Then

-c le T*(R, X).

Proof. It Is only necessary to show

cl z 20, for Yz c T(R x).

Now for an arbitrary z E T(R, x), there exist (xK) CRp, aK > 0 and lIM xK x
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such that

lrn aK( XK - X-) = Z.
K- oo

Since x Is an optimal solution of (P), we have

CT aK( XK - X) = aK( CTXK - CTX) 0.

Let k---o, we have

CTZ 2 0.

Q.E.D.

Lemma 7, Letx-E R be an optimal solution of (P) and let D(x)be aclosed set. Then

-c c DWx.

Proof. From Lemma 3, Lemmna 4 and Lemmna 5 we get

LOWx c T(R, X) c LUx) - *W

hence

L~x 0 (LO(X))* D T*(P, X-) :: L*(X-) =D'*(x) -DWx.

*Fhus

L*(X-) T *(M, -X) = D(x).

From Lemma 6, we get

-c c DWx.

Theorem 2. (Dual Theorem) Let X E R be an optimal solution or (P) and let DWx be

a closed set. Then (D) has an optimal solution Y, and clx yl 1b.

Proof. By Lemma 6, we have

-C E DWx.

Name ly, there exists y E Em such that

YE - KTM

yTA-- b) = 0,

-c =-ATY.
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Therefore

Ax - b E K,

yTA-CT O, ye-Kw

and

cTx - yTAx = YT b.

By Theorem I, y Is an optimal solution of (D), and

cl = Tb.

QE.D.

Note: Take K = E~m (namely, (P) and (D) are linear programming problems). Let

I : alx =bl, I I m),

then

D(x)=fc yaiT: yi 20, i E I

where

A -(ai, a2 ,..., am), b = (bD , b 2 ,..., bm)

It Is easy to show that D(x) Is a closed set.

Lot us consider the following pair of dual programs:

min (w xjo - iTyjo )

(P) s.t. wlx - IjTY E K

WEVU

and

max (tTS- + ̂ Ts*)

(D) st. )x- Xjo + s- = o

-Y + Yjo + s+ = 0

X E - K", S- E- V*, S -U
.
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Let 0\O, so-, so*) be a feas le solution of (D) and 4

(X"T soW s0 ) T-Tp+ y] yj E K, y2 eV, Y3 4EU

Assumption (A: D(X0O, so-, so+) Is a closed set.

Theorem 3 Let (XO, so-, sO+) be an optimal solution of (b) and let Assumption (A) hold

Then (P) has an optimal solution (W, p0), and

WOTXjo - p.ofy 10 . tTSO- + tTSO+.

Proof Since the dual of (b) Is (P), and Assumption (A) holds. Dy Theorem 2, we can

get the results.

Q+ED

Now lot us consider thc fol lowing pair of dual programs.

(min (wrxJ - pyo

s.t. WT -T c K

(P) W-V EV

tTV + t Tu=

VEV, uEU

and

* max z

sAt. Rx - X10 + s- 0

(D) - \Y1+ +=0

Zt -S EV"

zt - s+ -E tJ

Xc-K*. s-c-V*, s5EUN
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Let (X0, so-, so*, z0 ) be a teab be solution of (D) and
ffW Y~g+ yjVE-V, ue-U

W-V~y2  y1Er=K, Y2 E V, Y3 EU

b (xo, so-, so+, zo)= - P-U +Y VT(Zot - SO-) = 0

tTV + tTU uT(sot - _S
0 4) = 0

y ,TX\o= Y2 SO- = y3TSO -0

Assumption (13): D(X0O, so-, so+, z0) Is a closed set.

Theorem 4 Let 0\O, so-, so+, z0) be an optimal solution or (D), and lot Assumption (B)

hold. Then (P) has an optimal solution (W, p0 , vO, u0) and

WOTXjo - pIolylo = Zo.

Proof It Is similar to the proof of Theorem 3.

0. E.D.
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